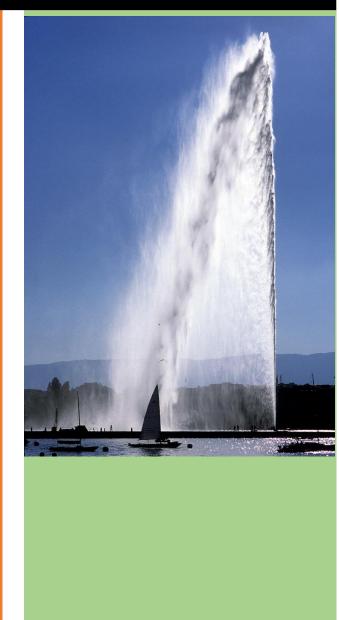
ICIS 2017


17th International Conference on Ion Sources

15-20 October 2017, CERN – CICG, Geneva

Topics:

- Fundamental processes
- Beam extraction, transport, and diagnostics
- Production of high intensity ion beams
- Production of highly charged ion beams
- Negative ion sources
- Ion sources for fusion
- Polarized ion sources
- Radioactive ion beams and charge breeders
- Applications and related technologies

VENUE

Getting to CERN globe:

By plane (Geneva Airport - Cointrin):

<u>Free</u> public transport ticket (machine next to exit of baggage collection hall - before customs control).

- Bus Y direction "CERN", <u>Stop</u>: (final) "CERN", proceed to large Globe on your right.
- Bus 23, 28 or 57, <u>Stop</u>: "Blandonnet", then tram 18, <u>Stop</u>: (final) "CERN".

By train (Geneva Railways Station - Cornavin):

Ticket: "Tout Geneve" 3.20CHF

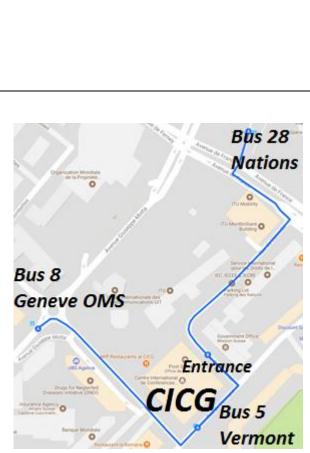
• Tram 18, Stop: (final) "CERN".

Getting to CICG:

By plane (Geneva Airport - Cointrin):

<u>Free</u> public transport ticket (machine next to exit of baggage collection hall - before customs control).

- **Bus 5** direction "Thônex-Vallard", <u>Stop</u>: "Vermont".
- **Bus 28** direction "Jardin Botanique", <u>Stop</u>: "Nations".

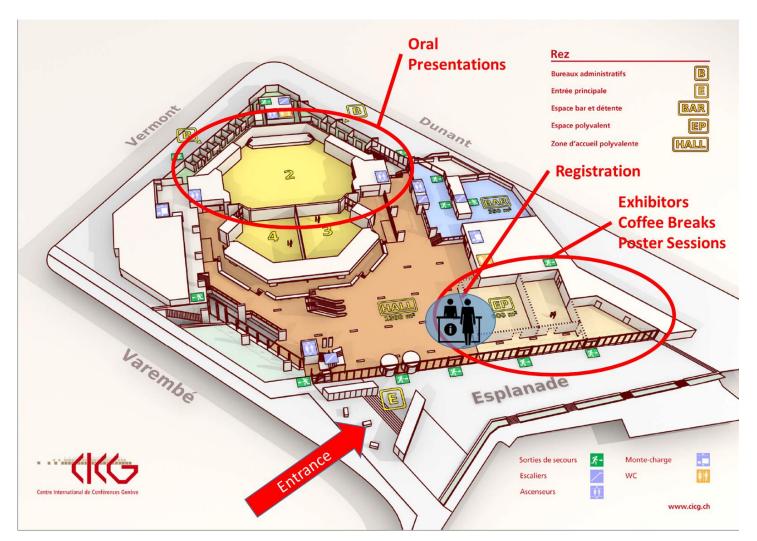

By train (Geneva Railways Station - Cornavin):

Ticket: "Tout Geneve" 3.20CHF

- Bus 5 direction "Aeroport", Stop: "Vermont.
- Bus 8 direction "Geneve, OMS", Stop: "UIT".
- Tram 15 direction "Geneve, Nations", <u>Stop</u>: "UIT".

From CERN:

 Tram 18 direction "Carouge", <u>Stop</u>: "Cornavin". Then follow <u>By Train</u> instructions. (Bus 5, Bus 8, Tram 15).



Rue de Varembé 17, 1211 Genève

CICG floor Map:

Located at the entrance level (**floor 0**), **auditorium 2** hosts all oral presentation in plenum. At the same level, coffee breaks, poster exhibition and Exhibitor's booth in a dedicated multi-purpose area. Registration will be at the lobby on Monday and then in the 2nd floor room 14.

PROGRAMME

Sunday 15 October, CERN Globe of Innovation:

16:30 - 17:00

Registration

17:00 - 19:00

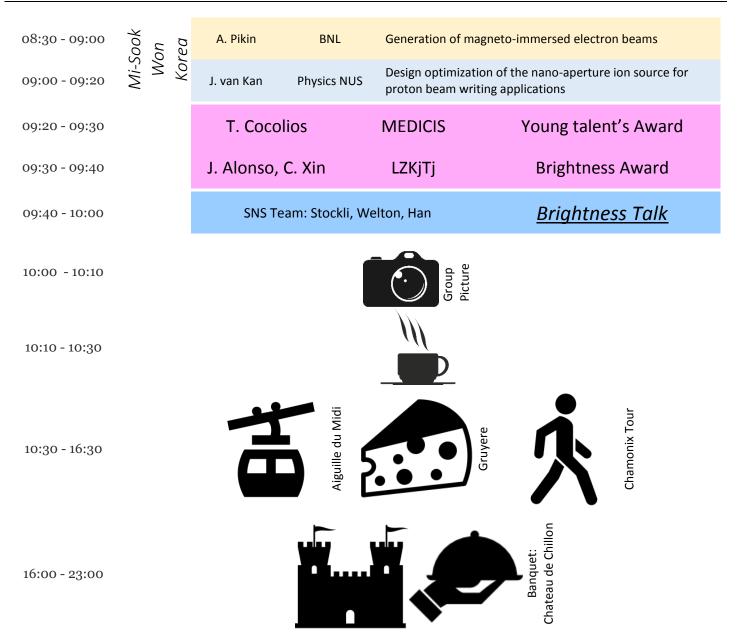
Welcome Reception

Monday 16 October, CICG:

08:30 - 09:00		<u>Registration / Coffee</u>						
09:00 - 09:10		<u>P. Collier: Welcome</u>						
09:10 - 09:40	er er	W. Kraus	IPP	Deuterium results at ELISE				
09:40 - 10:10	Alexander Ivanov Russia	M. Kashiwagi	QST	Achievement of 1 MeV beam accelerations for 60 s toward high power NBIs				
10:10 - 10:30	Ale I	A. Simonin	CEA	Ongoing R&D towards a new generation of neutral beam heating systems for future fusion reactors				
10:30 - 11:00								
11:00 - 11:30	<u>L</u>	T. Thuillier	CNRS	Prospect for a multicharged ECR ion source operated at 60 GHz				
11:30 - 11:50	Daniela Leitner USA	E. Beebe	BNL	The Extended EBIS Intensity Upgrade at Brookhaven National Laboratory				
11:50 - 12:10	aniela US	E. Donets	JINR	Status report on development and commissioning of new Electron String Ion Source (ESIS) Krion-6T.				
12:10 - 12:30	Da	S. Gammino	INFN	Commissioning of the AISHA (Advanced Ion Source for Hadrontherapy) Ion Source				
12:30 - 14:00								
14:00 - 14:30		T. Day Goodacre	TRIUMF	Review of Chemically selective ion sources for radioisotope production				
14:30 - 15:00	oth	S. Lawrie	STFC	Recent H– Diagnostics, Plasma Simulations and 2X Scaled Penning Ion Source Developments at the Rutherford Appleton Laboratory				
15:00 - 15:20	Dan Fairclo UK	S. Briefi AUGSBURG- Experimental benchmark of the UNIV. and its application for simulating		Experimental benchmark of the EM-PIC-MCC code NINJA and its application for simulating the Linac4 H- ion source plasma				
15:20 - 15:40	Dai	R. Welton	ORNL	Status of the New SNS Injector and External Antenna Ion Source				
15:40 - 16:00		A. Ueno	Conditions to Minimize Co-Extracted Electron Current and Beam Quality in J-PARC Cesiated RF-Driven H ⁻ Ion Source 6 mA Operation					
16:00 - 16:30								
16:30 - 19:00	A	sources	nental processes 5, plasma tion of high inter	beams				

beams

3

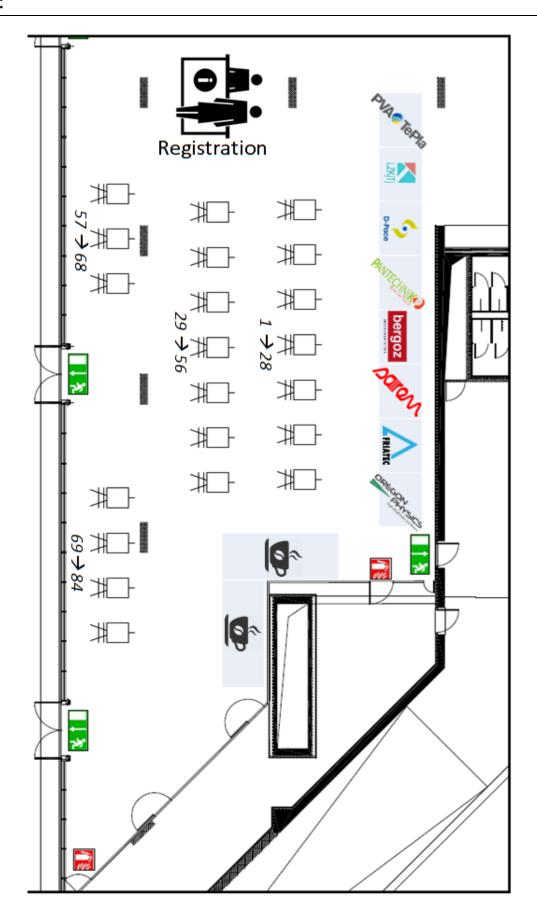

Tuesday 17 October, CICG:

08:30 - 09:00		M. Wada	DOSHISHA UNIV.	Plasma-surface interaction in negative hydrogen ion sources			
09:00 - 09:30	ntz 1y	K. Tsumori	NIFS	Flow patterns of H- ions measured with Directional Photodetachment Langmuir Probe			
09:30 - 09:50	Ursel Fantz Germany	G. Castro	INFN-LNS	Plasma diagnostics update and consequences on the upgrade of existing sources			
09:50 - 10:10	Urs Gi	J. Laulainen	JYVASKYLA UNIV.	Photoelectron Emission Induced by Low Temperature Hydrogen Plasmas			
10:10 - 10:30		J. Guo	IMP-CAS	45 GHz microwave power transmission and coupling scheme study with superconducting ECR ion source at IMP			
10:30 - 11:00							
11:00 - 11:30	ke	D. Wünderlich	IPP Garching	Review of PIC modelling for the extraction region of large negative hydrogen ion sources			
11:30 - 11:50	Beatrix Schunke France	Y. Belchenko	BINP	RF driven Multiaperture Surface-Plasma Negative Ion Source: Beam Formation and Transport via the LEBT			
11:50 - 12:10	atrix 9 Frai	E. Sartori	PADOVA UNIV.	First measurements of beam plasma in NIFS test stand			
12:10 - 12:30	Be	K. Ikeda	NIFS	First Results of Deuterium Beam Operation on Neutral Beam Injectors in the Large Helical Device			
12:30 - 14:00							
14:00 - 14:30		R. Vondrasek	ANL	Charge Breeding of Radioactive Isotopes at the CARIBU Facility			
14:30 - 15:00	Ames a	T. Kalvas	JYVASKYLA UNIV.	New challenges in ion beam extraction modelling			
15:00 - 15:20	Friedhelm ⊿ Canada	U. Fantz	IPP	Improved Understanding of the Caesium Dynamics in Large H Sources by Combining TDLAS Measurements and Modelling			
15:20 - 15:40	Friec	R. Agnello	EPFL	The RAID experiment for the investigation of negative ion physics for fusion applications			
15:40 - 16:00		F. Taccogna	CNR	Particle-based model of plasmadynamics in ITER-prototype negative ion source			
16:00 - 16:30							
16:30 - 19:00	A	5. Ion sou	e ion sources rces for fusion ed ion sources	 Radioactive ion beams and charge breeders Beam formation, extraction, transport, and diagnostics 			
18:00 - 18:45		IAC Meeting (Room 14, 2 nd Floor)					
19:30 - 22:00		<u>IAC dinner</u>					

Wednesday 18 October, CICG:

2							
08:30 - 09:00		S. Steinke	LBNL	Direct laser ionization and acceleration using PW lasers			
09:00 - 09:30	imino	Y. Zhao	IMP	Superconducting ECR ion source: from 24-28 GHz SECRAL to 45 GHz FECR			
09:30 - 09:50	Santo Gammino Italy	V. Skalyga	IAP-RAS	Status of new developments in the field of high-current gasdynamic ECR ion sources at the IAP RAS			
09:50 - 10:10	Santc	L. Celona	INFN-LNS	High intensity proton source and LEBT for the European Spallation Source			
10:10 - 10:30		S. Ikeda	BNL	Investigation of laser energy absorption by ablation plasmas			
10:30 - 11:00							
11:00 - 11:30	to	A. Aanesland	Palaiseau, France	Innovative RF-driven ion source thruster for space applications			
11:30 - 11:50	Hannu Koivisto Finland	A. Kitagawa	QST	Status of ion sources at The National Institutes for Quantum and Radiological Science and Technology (QST)			
11:50 - 12:10	annu l Finl			Ion sources for medical radioisotopes produced by electromagnetic mass separation at CERN-MEDICIS			
12:10 - 12:30	Н	Y. Martinez Palenzuela	KU LEUVEN	Study and optimization of the VADLIS ion source for the production of radioactive beams at ISOLDE			
12:30 - 14:00							
14:00 - 14:30		A. Adonin	GSI	Progress on the MEVVA source VARIS at GSI			
14:30 - 15:00	Zhao	O. Tuske	CEA SACLAY	Commissioning of the ECR Ion Source of the High Intensity Proton Injector of the Facility for Anti Proton and Ion Research at CEA-Saclay			
15:00 - 15:20	Hongwei Zł China	A. Garcia Sosa	FNAL	Implementation of Design Changes Towards a More Reliable, Hands-off Magnetron Ion Source			
15:20 - 15:40	Hong	T. Nagatomo	RIKEN	Residual Gas Effect in LEBT on Transverse Emittance of Multiply-Charged Heavy Ion Beams Extracted from ECR Ion Source			
15:40 - 16:00		A. Zelenski	BNL	The RHIC polarized H- ion source			
16:00 - 16:30							
16:30 - 19:00	A	 7. Beam formation, extraction, transport, and diagnostics 8. Industrial and medical application of ion sources 8. Other related technologies 					
18:30 - 23:00	Brightness dinner						

Thursday 19 October, CICG:



Friday 20 October, CICG:

08:30 - 09:00	i va	Ferrar	KU LEUVEN	Advances in gas-cell based resonance laser ionisation methods for radioactive ion beam production.					
09:00 - 09:30	Atsuski Kitagawa Japan	Crespo López-Urrutia	Heidelberg	Design and test of the TRIUMF EBIS RIB Charge breeder					
09:30 - 09:50	Y XIY	A. Lapierre	NSCL	On-line operation of the EBIT charge breeder of the ReA post-accelerator					
09:50 - 10:20			L. Penescu: ICIS17 Highlights						
10:20 - 10:30				<u>Next ICIS</u>					
10:30 - 11:00									
11:00 - 11:15		F. Tecker	CERN	CERN accelerators					
11:15 - 11:30	hler nd	M.G. Borgue	CERN ISOLDE	ISOLDE and n-ToF Physics					
11:30 - 11:45	Detlef Kuchler Switzerland	L. Gatignon	CERN	SPS physics					
11:45 - 12:00	Detlo	U. Wiedeman	CERN	LHC Phenomenology & Physics					
12:00 - 12:15		K. Shaw CERN LHC detectors & physics							
12:15 - 12:25			<u>J. Let</u>	try: Conference Closing					
12:25 - 13:15									
13:15 - 17:10		CERN Visit							
17:10 - 17:40		Departures to Airport							

POSTERS

Floor Map:

Fundamental Processes:

<u>Mo 01</u>	D. Fu	Metal plasma formation for Duhocamis	<u>Mo 19</u>	V. Dudnikov	RF positive ion source with solenoidal magnetic field
<u>Mo 02</u>	M. Cavenago	Towards kinetic models of electron transport in negative ion source	<u>Mo 20</u>	J. Cao	The influence of Magnetic field on the ion beam current and beam oscillation of
<u>Mo 03</u>	W. Wu	Emission Spectroscopy Diagnostics of Quartz-chamber 2.45 GHz ECR Ion Source at Peking University	<u>Mo 21</u>	D.	Calutron ion source Commissioning results of the Multicusp Ion
		Broadband microwave emission and	100 21	Winklehner	Source at MIT (MIST-1) for H2+
<u>Mo 04</u>	I. Izotov	electron losses associated with kinetic instabilities in ECR Plasmas	<u>Mo 22</u>	D. Sivin	Low Energy, High-Intensity Repetitively Pulsed Ion Beams Generation
<u>Mo 05</u>	Y. Kato	4.0-6.0 GHz Extraordinary mode experiments on 2.45 GHz Electron Cyclotron	<u>Mo_23</u>	V. Skalyga	Proton beam formation from an ECR discharge in a single coil field
		Resonance Ion Source	<u>Mo 24</u>	I. Izotov	Study of plasma parameters in a CW gasdynamic ECRIS
<u>Mo 06</u>	Y. Saito	Investigation of Laser Ablation Plasma from Thin Graphite Target	<u>Mo 25</u>	I. Draganic	Hot Filament Performance Simulation in a Freeman Ion Source
<u>Mo 07</u>	I. Yamada	Development of a Compact Molecular Hydrogen Ion Source for Low Energy Surface Scattering Experiments	<u>Mo 26</u>	Sh. Ikeda	Development of a laser ion source for a four-beam IH-RFQ linac
Mo 08	T. Shibata	Comparison of photometry measurement and numerical analysis for plasma density	<u>Mo 27</u>	Hu. Zhao	Proton production by a laser ion source with hydride targets
1010-08	r. Sinbutu	oscillation with doubled value of RF frequency in J-PARC RF ion source	<u>Mo 28</u>	G. Yushkov	Multiply Charged Ion Source Based on High Current Short Pulse Duration Vacuum Arc
<u>Mo 09</u>	R. Endo	Production of Hydrogen Negative Ions in high density Sheet Plasma.	<u>Mo 29</u>	A. Shevelev	Formation of highintensity, macroparticlefree aluminum ion beams
<u>Mo_10</u>	R. Racz	Radial and azimuthal dependence of plasma parameters in a hexapole-trapped ECR discharge	<u>Mo 30</u>	R. Berezov	High intensity proton injector for the FAIR P- LINAC
Mo_11	Y. Matsumoto	Study of low-energy electron transport at extraction region in hydrogen negative ion	<u>Mo 31</u>	Golubev	Point-like neutron source based on a gasdynamic high-current ECRIS
<u></u>		source with an additional electrons source	<u>Mo 32</u>	J. Hasegawa	Control of a laser-produced dense plasma flow by a divergent magnetic field
<u>Mo 12</u>	K. Hamada	Enhanced Production of Electron Cyclotron Resonance Plasma by Positioning Plate- Tuner	<u>Mo 33</u>	Y. Iwashita	Compact H+ ECR Ion Source with Pulse Gas Valve
<u>Mo 13</u>	G.M. Saquilayan	Production of Oxygen lons through the Laser Ablation of Alumina	<u>Mo 34</u>	M. Okamura	Low charge state laser ion source driven by a sub nanosecond laser
<u>Mo 14</u>	I.N. Ocampo	Ar/O2 Plasma Treatment of Cotton Fabric via Atmospheric Pressure Plasma Jet	<u>Mo 35</u>	Kashiwagi	Laser plasma generation system with controlled interpulse delay between two laser shots
<u>Mo 15</u>	G. Torrisi	Non-conventional microwave coupling of RF power in ECRIS plasmas	<u>Mo 36</u>	T. Wang	Stability and lifetime of scandium deuteride film cathode in a vacuum arc ion source
<u>Mo 16</u>	V. Skalyga	Microwave emission from ECR plasmas under conditions of two-frequency heating induced by kinetic instabilities.	<u>Mo 37</u>	S. T. Stegemann	Production of high intensity 11C beams for PET-aided hadron therapy
<u>Mo 17</u>	J. Smith	Towards better modelling of surface emission in caesiated materials	<u>Mo 38</u>	A. Adonin	Increasing of the operation duty cycle for heavy elements such as Au, Pb, Bi and U from high current ion courses
Mo 19	A. Galata	Status and perspectives of INFN simulation			from high current ion sources Status of a new 28 GHz CW gasdynamic ECR
<u>Mo_18</u>	A. Guiutu	tools: from beam-plasma interaction to a self-consistent plasma-target modelling	<u>Mo_39</u>	S. Golubev	ion source development at IAP RAS
			<u>Mo 40</u>	N. Kumar	A compact 2.45 GHz microwave ion source and associated Wien filter based analyzing system for low energy ion beam facility
					The UDGION Ungrades Ligh Quality Ion

<u>Mo 41</u>

M. Schmidt

Production of High Intensity Ion Beams:

The LIPSION Upgrade: High Quality Ion

Nano-Beams

Production of Highly Charged Ion Beams:

<u>Mo 42</u>	W. Lu	Conceptual design of a quench protection system for a MARS magnet
<u>Mo 43</u>	J. Zhang	Preliminary Design of a Hybrid Ion Source for 7Li3+ Generation
<u>Mo_44</u>	M. Breitenfeldt	MEDeGUN commissioning results
<u>Mo_45</u>	X. Jin	The Hybrid Electromagnetic Simulation of Ionization Characteristics in ECR Ion Source
<u>Mo_46</u>	T. Suzuki	Development of a new compact ECR ion source with all permanent magnets for carbon 5+ production
<u>Mo 47</u>	T. Kalvas	Status of new 18 GHz ECRIS HIISI
<u>Mo 49</u>	R. Thomae	Production of high intensity Nickel-ion beams with high isotopic purity with the Metal Ion from Volatile Compound (MIVOC) method
<u>Mo 50</u>	V. Toivanen	Upgrade of the GTS Electron Cyclotron Resonance Ion Source at GANIL
<u>Mo 51</u>	Y. Kim	Low field experiments with 18GHz RF power of the RAON ECR ion source
<u>Mo 52</u>	S. Lee	Characterization of EBIS test bench at KOMAC
<u>Mo 53</u>	M. Sakieldien	Investigation into the gas mixing effect in ECRIS plasma using K diagnostics
<u>Mo 54</u>	M. Sakieldien	Studying the double-frequency heating mode in ECRIS plasma using K diagnostics
<u>Mo 55</u>	D. Neben	Plasma Response to Amplitude and Frequency Modulation of the Microwave Power on a 14 GHz Electron Cyclotron Resonance Ion Source
<u>Mo 56</u>	T.K.T. Kovener	Study of the Micro Oven for the Linac3 ECR lon Source at CERN
<u>Mo 57</u>	B. Lee	The current status of 28GHz ECR ion source at KBSI
<u>Mo 58</u>	R. Kronholm	The effect of ECRIS tuning parameters on the intensity of the Ar9+ optical emission and ion beam current
<u>Mo 59</u>	A. Losev	Characteristics of a heavy ion injector Z/A1/3 based on laser-plasma ion source
<u>Mo_60</u>	A. Eframov	The preliminary tests of the high charge state all-permanent magnet ECR ion source DECRIS-PM
<u>Mo 61</u>	A. Eframov	Upgrading of the CAPRICE type ECR ion source

<u>Mo 62</u>	H. Kremers	Intense, pure and stable highly charged ion beams from the AECR ion source at KVI- CART.
<u>Mo 63</u>	M. Lee	A study on the dielectric design of high voltage platform for developing 28 GHz ECRIS at KBSI
<u>Mo 64</u>	F. Maimone	Operation of a double frequency heated ECRIS in cw and pulsed mode
<u>Mo_66</u>	T. Thuillier	Effect of the plasma chamber radius on the high charge state production in an ECR Ion Source
<u>Mo 67</u>	P. Salou	PKGANESA: an ECRIS for testing the axisymetric magnetic structure for the production of multicharged ion beams
<u>Mo 68</u>	L. Sun	Technical Approaches towards Intense High Charge State Ion Beam Production with Superconducting ECR Ion Sources
<u>Mo 69</u>	T. Nakagawa	Recent developemt of RIKEN 28 GHz SC- ECRIS
<u>Mo 70</u>	G. Rodrigues	The effect of frequency tuning in the 10 GHz NANOGAN ECR ion source
<u>Mo 71</u>	G. Castro	Commissioning of the AISHA Ion Source
<u>Mo 72</u>	A. Boytsov	Main Magnetic Focus Ion Source for ionization of L- and M-shell electrons of heavy elements
<u>Mo_73</u>	M. Salahshoor	2D Axisymmetric Simulation of an ECR Argon Plasma

Negative Ion Sources:

<u>Mo 74</u>	V. Dudnikov	Negative ion radio frequency surface plasma source with solenoidal magnetic field
<u>Mo 75</u>	V. Dudnikov	Efficient method for Cold Muonium Negative Ion Production
<u>Mo 76</u>	M. Bacal	Negative Ion Source Operation with Deuterium
<u>Mo 77</u>	V. Dudnikov	Carbon Film in Radio Frequency Surface Plasma Sources with cesiation
<u>Mo 78</u>	M. Cavenago	Extraction of many H- beamlets from uncesiated ion source NIO1
<u>Mo 80</u>	P. Zhao	Numerical simulation of electromagnetic fields and impedance of an RF based negative ion source at HUST
<u>Mo 81</u>	Y. Shimabukuro	Contribution of atomic hydrogen flux on H- ion beam extracted from a negative hydrogen ion source

Negative Ion Sources:

<u>Tu 01</u>	R. Friedl	Work function of caesiated and Cs-free materials for enhanced H- surface production	
<u>Tu 02</u>	I. Draganic	Recent Results in Modeling of LANSCE H- Surface Convertor Ion Source	
<u>Tu 03</u>	P. Veltri	Langmuir probe characterization of the NIO1 ion source plasma	
<u>Tu 04</u>	K. Miyamoto	Numerical analysis of negative hydrogen ion beam optics by using 3D3V PIC simulation	
<u>Tu_05</u>	M. Brombin	System for voltage control and for data acquisition of Retarding Field Energy Analyzer	
<u>Tu 06</u>	K. Nishida	Numerical Analysis of Ion Dynamics in RF ICP Discharge	
<u>Tu 07</u>	S. Masaki	Diagnostics of Ta Deposited Plasma Electrode for Negative Hydrogen Ion Production with DC Laser Photodetachment Method	
<u>Tu 08</u>	S. Ishihara	Development of cesium-free negative ion source by using high density sheet plasma	
<u>Tu 09</u>	S. Fujita	The Effect of Transport and Extraction of Inhomogeneous Surface Produced H- in Large Multi-Aperture Negative Ion Sources	
<u>Tu_10</u>	S. Yamada	Numerical Simulation of the EEDF and the Neutral Transport in the DC Arc-discharge Hydrogen Negative Ion Source for Medical Use	
<u>Tu_11</u>	K. Shinto	Present status of the J-PARC cesiated rf- driven H- ion source	
<u>Tu 12</u>	W. Kobayashi	Development of the Plasma Impedance Prediction Model in Radio Frequency Negative Ion Sources	
<u>Tu 13</u>	K. Yamada	Development of an electron attachment type negative fullerene ion source	
<u>Tu 14</u>	A. Sanin	Long-term performance of CW negative hydrogen ion source at BINP tandem accelerator	
<u>Tu 15</u>	S. Liu	The improvement of CSNS ion source	
<u>Tu_16</u>	I. Morgal	First experimental results of the helicon driver on Cybele	
<u>Tu_17</u>	T. Zhang	Performance of PKU H- Source with Liners of Different Materials	
<u>Tu_18</u>	S. Lätti	Parametric dependence of hydrogen plasma Lyman-band emission and H- ion beam intensity in LIISA ion source	
<u>Tu_19</u>	T. Matlocha	Modification of a classical PIG ion source for sub-femtoampere beams at the U-120M cyclotron	
<u>Tu 20</u>	C. Baltador	Effect of filter field and biased double-Bias Plate on volume process in negative ion sources	
<u>Tu 21</u>	W. Chen	Construction of External Antenna RF H- minus Source in CSNS	

<u>Tu 23</u>	S. Averkin	Global Model of a Negative Hydrogen Ion Source with Caesiated Plasma Grid
<u>Tu 24</u>	B. Han	Optimization of the Cesiation Process for the SNS H- Ion Sources
<u>Tu_25</u>	M. Stockli	Record Performance of the Spallation Neutron Source H- Injector
<u>Tu_26</u>	H. Nakano	Response of negative-ion beamlet by insulation tip in the vicinity of plasma grid
<u>Tu 27</u>	D. Faircloth	Scaled Penning Source Developments
<u>Tu_29</u>	D. Steski	Production of Ruthenium-96 lons for RHIC*
<u>Tu_30</u>	D. Kleinjan	Diagnostics and Improvements for the LANSCE H- Ion Source
<u>Tu 31</u>	S. Melanson	Improvements to 13.56 MHz RF Powered H– Ion Source

Ion Sources for Fusion:

<u>Tu 32</u>	M. Cavenago	Advanced filter structures for NIO1 and other negative ion sources
<u>Tu 33</u>	V. Variale	Beam Energy Recovery for Fusion: Secondary Electrons Problem study and Experimental Tests
<u>Tu 34</u>	Y. Xie	R&D of radio frequency ion source for neutral beam injector in ASIPP
<u>Tu 35</u>	Y. Xie	Status of arc based high power ion source for EAST neutral beam injector
<u>Tu_36</u>	M. Kisaki	Effect of plasma grid bias on negative ion beam optics
<u>Tu_37</u>	S. Popov	Experimental realization of non-resonant photon neutralizer for negative ion beams. Concept of neutralizer for big NBI systems
<u>Tu 38</u>	G. Fubiani	Modelling of Negative Ion Extraction from a Magnetized Plasma Source
<u>Tu 39</u>	R. Friedl	Laboratory experiments for developments in view of DEMO NNBI
<u>Tu 40</u>	V. Davydenko	Development of helium ion source for NPA system in ITER
<u>Tu 41</u>	B. Schunke	Update on the Negative Ion Based Neutral Beam Injectors for ITER
<u>Tu 42</u>	P. Jain	Power transfer efficiency in inductively coupled radio-frequency ion source: case study for the NIO1
<u>Tu 43</u>	T. Karino	Plasma instability due to solenoid magnetic field
<u>Tu 44</u>	P. Deichuli	Upgrade of the low energy, high power neutral beam system
<u>Tu_45</u>	C.J. Xie	Experimental study of matching network with different frequency for RF ion source

Ion Sources for Fusion:

<u>Tu 46</u>	G. Chitarin	Benchmark of 3D multi-beamlet numerical models for the optics design of negative ion	<u>Tu 64</u>	T. Karino	Investigate the characteristics of oxide of ^{96}Zr	
Tu 47	A. Eshkevar	accelerators Conceptual design of an ion source for the	<u>Tu 65</u>	J. Angot	Recent improvements of the LPSC Charge Breeder	
<u>Tu_47</u> Tu_48	Vakili M. Ichikawa	DAMAVAND Neutral Beam Injection High power and long pulse negative ion production by suppressing of arcing for JT-	<u>Tu 66</u>	O. Tarvainen	The effect of plasma instabilities on the background impurities in charge breeder ECRIS	
<u>Tu 49</u>	J. Wei	60SA Design study of 200keV H- accelerator for CFETR neutral beam test facility	<u>Tu_67</u>	L. Maunoury	Charge breeding technique at GANIL: commissioning of the SPIRAL1 charge breeder and new 1+/n+ test bench	
<u>Tu 50</u>	J. Hiratsuka	Experimental validation of grid heat loadings in the five-stage accelerator with the ITER-relevant gap lengths	<u>Tu 68</u>	K. Chrysalidis	Laser Ion Source for High Resolution Doppler-Free Resonance Ionization Spectroscopy of Radioisotopes and	
<u>Tu 51</u>	F. Bonomo	Overview of the Beam Physics Investigation at the ELISE test facility			Enhanced Isomer Selectivity Electron and Ion Beam Simulations for the	
<u>Tu 52</u>	J. Wei	Commissioning and first results of the ASIPP RF-driven negative ion source	<u>Tu 69</u>	Shu. Ikeda	BNL Extended EBIS at Brookhaven National Laboratory	
Tu 53	J. Wei	Distributions of primary-electron populations in different magnetic filter	<u>Tu 70</u>	N. K. N. Bidault	Slow Extraction of charged ion pulses from the REX-EBIS	
<u>10 55</u>	<u>10 55</u> 5. Wei	configurations	<u>Tu 71</u>	F. Ames	The CANREB Project for Charge State Breeding at TRIUMF	
<u>Tu 54</u>	G. Serianni	Numerical investigation of the early operational phase of the negative ion test facility SPIDER: beam features and	<u>Tu 72</u>	Y. Liu	Resonant Ionization of Atomic Te with Ti:Sapphire Lasers*	
<u>Tu_55</u>	K. Lee	diagnostics Development of High current density Helicon ion source for DNB in VEST	<u>Tu_73</u>	C. Dickerson	Effects of the CARIBU EBIS trap configuration on extracted ion beam characteristics	
<u>Tu 56</u>	M. Kisaki	Study of isotope effects in hydrogen negative ion sources	<u>Tu 74</u>	J. Pitters	Charge breeding of CO+ beams at REX- ISOLDE	
<u>Tu 57</u>	H. Nakano	Comparison of beam to arc discharge current ratio between hydrogen and deuterium operations in LHD-NBI ion	<u>Tu 75</u>	M. Segal	Towards Ga+ and Au+ ion injection into ESIS: Mock-setup experiments and ion bear profiling.	
		sources Particle model of the Driver of the negative	<u>Tu 76</u>	F. Papadakis	Status and development of the MARA low- energy branch	
<u>Tu 58</u>	N. Ippolito	ion source for ITER neutral beam injection system	<u>Tu 77</u>	B. Tang	The first radioactive ion beam at the Beijing Radioactive Ion-beam Facility	
<u>Tu 59</u>	A. Dunaevsky	Neutral Beam Injection System for the C-2W Field Reversed Configuration Experiment	<u>Tu 79</u>	J. Ballof	Ion sources for new radioactive refractory element beams at CERN-ISOLDE	
<u>Tu 60</u>	M. Fadone	Alternative New Concept of an Efficient Negative Ion Source for Neutral Beams	<u>Tu 80</u>	D. Leimbach	Development of an off-line negative ion source for the characterization of the	

Radioactive Ion Beams, Charge Breeders and Polarized Beams:

<u>Tu_61</u>	V. Mironov	Simulation of charge-breeding processes in ECRIS
<u>Tu_62</u>	B. Cui	A prototype target-ion source for RIB production in a reactor
<u>Tu 63</u>	R. Heinke	Towards Direct High-Resolution Laser Spectroscopy on Exotic Isotopes at Hot Cavity Ion Sources: Crossed Laser - Atom Beam Interaction in the Laser Ion Source Trap LIST

10 08	K. Chi ysunuis	Spectroscopy of Radioisotopes and Enhanced Isomer Selectivity
<u>Tu 69</u>	Shu. Ikeda	Electron and Ion Beam Simulations for the BNL Extended EBIS at Brookhaven National Laboratory
<u>Tu 70</u>	N. K. N. Bidault	Slow Extraction of charged ion pulses from the REX-EBIS
<u>Tu 71</u>	F. Ames	The CANREB Project for Charge State Breeding at TRIUMF
<u>Tu 72</u>	Y. Liu	Resonant Ionization of Atomic Te with Ti:Sapphire Lasers*
<u>Tu_73</u>	C. Dickerson	Effects of the CARIBU EBIS trap configuration on extracted ion beam characteristics
<u>Tu 74</u>	J. Pitters	Charge breeding of CO+ beams at REX- ISOLDE
<u>Tu 75</u>	M. Segal	Towards Ga+ and Au+ ion injection into ESIS: Mock-setup experiments and ion beam profiling.
<u>Tu 76</u>	F. Papadakis	Status and development of the MARA low- energy branch
<u>Tu 77</u>	B. Tang	The first radioactive ion beam at the Beijing Radioactive Ion-beam Facility
<u>Tu 79</u>	J. Ballof	Ion sources for new radioactive refractory element beams at CERN-ISOLDE
<u>Tu 80</u>	D. Leimbach	Development of an off-line negative ion source for the characterization of the photodetachment detector GANDALPH
<u>Tu 81</u>	N. Lecesne	REGLIS3 at S3 for the production of high purity refractory RIBs
<u>Tu 84</u>	K. Rijpstra	Ion Source Development for ISOL@MYRRHA
Roam	extraction	n transport & diagnostics:

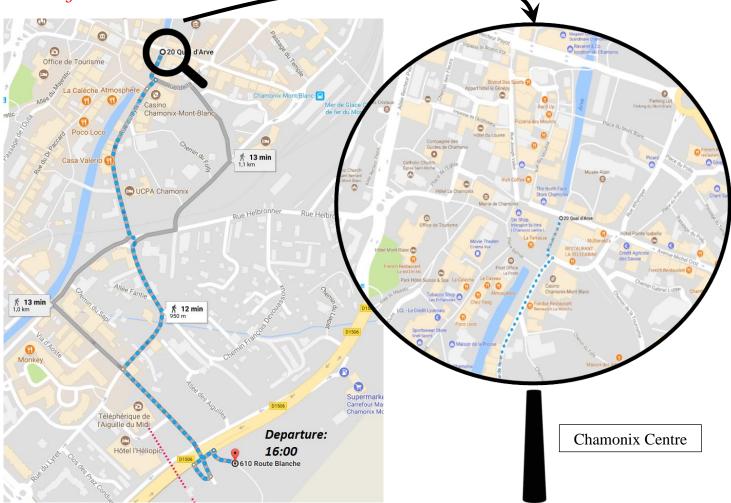
Beam extraction, transport & diagnostics:

<u>Tu 82</u>	S. Kondrashev	Isotope Separator for External Ion Injection into EBIS
<u>Tu 83</u>	N. Mamedov	Comparison of the ion beam profile measuring methods
<u>Tu_85</u>	P. Creemers	First Simulations of RIB extraction in the ISOL@MYRRHA target module

Beam extraction, transport & diagnostics:

<u>We 01</u>	H. J. You	Downsizing study of SMASHI LEBT for higher beam transmission efficiency	<u>We 20</u>	S. Abe	Analysis of the H- Extraction in the Linac4 Negative Ion Source by 2.5D Particle Simulation
<u>We 02</u>	A. Goncharov	Advances in development new generation plasma-optical systems	<u>We 21</u>	B. Cheymol	Performance and first data analysis of the ESS emittance measurement unit
<u>We_03</u>	Y. YANG	Design of the beam extraction and transport system for FECR			Ion beam and discharge characteristics of a
We_04	V. Mironov	On optical properties of ion beams extracted from Electron Cyclotron	<u>We_22</u>	A. G. Cuevas	multi-cusp ion source with various magnetic field configurations
		Resonance Ion Source Status of high intensity low energy injector	<u>We 23</u>	F. Maimone	Particle dynamic simulations of the GSI test injector facility HOSTI
<u>We_05</u>	Q. WU	for Jinping Underground Nuclear Astrophysics experiments	<u>We 24</u>	O. Midttun	Measurements and simulations of the beam extraction from the ESS proton source
<u>We 06</u>	H. Barminova	CAMFT code for ion bunch dynamics simulation in external fields with parallel	<u>We 25</u>	A. Pimazzoni	Modeling of beam acceleration for the negative ion source NIO1
We 07	Y. Xu	computing Design of a long pulse beam diagnostic calorimeter for the prototype RF-driven	<u>We 26</u>	Mc G. K. Ramos	Simulation of Low-energy Ion Beam Trajectories from a Thin Wire Mesh Electrode Configuration
<u>we 07</u>	r. xu	negative ion source for neutral beam injection application	<u>We 27</u>	M. Lee	Design and fabrication of a beam dump at KBSI heavy ion facility
<u>We 09</u>	A. Kolmogorov	Effective transportation of negative hydrogen ions in a synthesized hydrogen beam	<u>We 28</u>	P. Fedin	Al and W ion beams from MEVVA ion source material radiation resistance
<u>We 10</u>	A. Deka	Spectral Modelling of Neutral Beam for Doppler Shift Spectroscopy Diagnostics of	<u>We_29</u>	G. Serianni	Child-Langmuir-limited current in the negative ion source NIO1
<u>we 10</u>	A. Deku	INTF Beam characterization by means of	<u>We_30</u>	B. Lee	The study of Wien filter for gas cluster ion source
<u>We 11</u>	M. Barbisan	emission spectroscopy in the NIO1 experiment	<u>We_31</u>	S. Andrianov	MEVVA single aperture extraction system
<u>We 12</u>	L. Bellan	Self-consistent potential in high intensity deuteron beams simulations and measurements	<u>We 32</u>	G. Rodrigues	Longitudinal emittance and in-situ plasma potential measurements of ion beams from the High Temperature Superconducting ECR Ion Source, PKDELIS
<u>We 13</u>	H. Sakakita	Ion Velocity Components and Space Potential Measurements on a Spontaneous- Focusing State of High-Current-Density and Low-Energy Ion Beam by Using Double	<u>We 33</u>	A. P. Tanquintic	Two-Dimensional Spatial Distributions of Ion Flow produced from Laser-Induced Plasmas in Capillary Targets
		Electrostatic Probes	<u>We 34</u>	A. Pikin	Low energy ion beam line for Twin EBIS
<u>We 14</u>	L. Weissman	Beam optics effects at the entrance to the SARAF RFQ	<u>We 35</u>	X. Jia	The Beam Injection Line Test of CYCIAE-100 Cycotron
<u>We 15</u>	Y. Ishii	Development of a Prototype of PIG Ion Source with Electric Magnets for a Compact Ion Microbeam System	<u>We 36</u>	C. Lan	Metal ion filtering of vacuum arc ion source through an inclined-aperture extraction grid
<u>We_16</u>	K. Shinto	Observation of beam current fluctuation extracted from an rf-driven H- ion source	<u>We 37</u>	D. Noll	Linac4 source extraction and low energy beam transport study
<u>We 17</u>	S. Nishioka	Integrated modeling of the beam formation and extraction in the Linac4 hydrogen	<u>We 38</u>	G. Machicoane	Ion Source and Front End commissioning at the Facility for Rare Isotope Beams
		negative ion source	We 39	М.	Effect of grids geometry on the space charge induced divergence of a multi-
<u>We 18</u>	K. Yoshioka	Extraction of an Aluminum-Nitride Ion Beam from a Planar Magnetron Sputter type Ion Source		Salahshoor	beamlet ion beam Preliminary oxygen ion beam acceleration
<u>We 19</u>	Y. Imamura	Development of a Carbon Cluster Ion Source with a Hollow Cathode	<u>We_40</u>	H. In-Seok	test for the RISP injector

Applications & Related Technologies:


<u>We_41</u>	E. Oks	Generation of pure boron plasma for ion beam formation and surface modification	<u>We_63</u>	S. Gajjar	Characterization of 1 MHz Solid State High Frequency Power Supply with Inductively
<u>We 42</u>	N. Mamedov	Study of energy and mass-charge spectra of ions emitted by a hydrogen Penning plasma source.	We 64	T. Uchida	Coupled Plasma On the formation mechanism of the formation of modified fullerenes in the two-
<u>We 43</u>	E. Oks	Generation of boron ion beams by vacuum arc ion source with lanthanum hexaboride	<u>we 04</u>	1.0011100	chamber configuration of the Bio-Nano ECRIS
	5.01-	and boron carbide cathodes Magnetron discharge-based boron ion	<u>We 65</u>	M. Lee	The first test of the ion implantation beamline at VIBA
<u>We_44</u> We_45	E. Oks E. Oks	source A pulsed vacuum arc ion source with a pure	<u>We_66</u>	J. Heo	Analysis on the Superconducting Magnet Performance for RAON 28 GHz ECR Ion Source
We_46	M. Cutroneo	boron cathode Ion beam lithography, a promising technique for patterning of graphene oxide	<u>We_67</u>	M. Vasquez	Electron Beam-Mediated Reduction of Silver Ions Impregnated in a Natural Zeolite Framework
<u>We 47</u>	N. Kamiguchi	foil Development of a compact internal PIG H+ ion source for idustrial use	<u>We 68</u>	N. Hayashizaki	Development of 2.45 GHz ECR proton source for compact accelerator-driven neutron source system
<u>We 48</u>	N. Takahashi	Development of New Electromagnets for a Microwave Ion Source	<u>We 69</u>	T. Watanabe	Wireless telegram microwave ECRIS
<u>We 49</u>	Q. Ji	Acceleration of Ion Beams using a scalable microelectronmechanical-system-based RF	<u>We 70</u>	Y. Tsuda	Producing and Identifying Multiply Charged Fullerene Ion Beams and Their Compounds.
<u></u>	_	structures The construction of the inner ion source for	<u>We 71</u>	T. Yorita	3He beam development of 18GHz SCECR-IS for proton generator at RCNP
<u>We_50</u>	G. Chen	SC200 compact superconducting cyclotron	<u>We_72</u>	B. Lee	The development of proton ECRIS for boron neutron capture therapy
<u>We 51</u>	S. Xu	The trajectory simulation and optimization of ion source chimney for SC200 cyclotron	<u>We 73</u>	M. Celik	Ferromagnetic Enhanced Inductively Coupled Plasma Cathode for Thruster Ion
<u>We 52</u>	M. Muramatsu	Improvement of microwave injection for heavy ion production at compact ECR ion source		К.	Neutralization Electron Cyclotron Resonance Ion Sources
W/o E2	<i>S</i> .	ECR-source of an intense beam of low-	<u>We 74</u>	Rittenhouse	for Solar and Semiconductor Applications
<u>We 53</u>	Konstantinov	energy hydrogen ions	<u>We 75</u>	X. Bin	The optimization of evaporative cooling magnet for LECR4 ion source
<u>We 54</u>	Q. Ji	Interaction of Intense Pulsed Ion Beams with Matter: Fluence and Dose Rate Dependent Energy-Loss	<u>We 76</u>	C. Lihua	Design of a 400kV high intensity accelerator facility for Jinping Underground for Nuclear Astrophysics
<u>We 55</u>	R. Delogu	Inverse Heat Flux evaluation of diagnostic calorimeter data by neural networks	We 77	X. Jia	Design and Experiment Study of an Internal Cold-cathode Ion Source for the 230MeV SC
<u>We 56</u>	Y. Kato	Production of Nitrogen-Fullerene Compound Ion Beams on Tandem-Type			Cyclotron New calibrated evaporation oven for Time
<u>We 57</u>	H. Koguchi	Electron Cyclotron Resonance Ion Source Carbon pulsed evaporator for carbon	<u>We 78</u>	D. Scarpa	of Flight Mass Spectrometer in offline SPES laser laboratory
<u>We 58</u>	A. Megia-	plasma source The Ion Source for the Commissioning of	<u>We 79</u>	S. Momota	Fabrication of swelling structure on SiC surface by using multi-charged Ar beam
	Macias	ELENA Ring A new control system for high resolution In-	<u>We 80</u>	S. Rothe	A test stand for the development of ion sources at CERN-ISOLDE
<u>We 59</u>	K. Dockx	Gas Laser Ionization and Spectroscopy studies Production of Proton Beam with ZrH2 Pellet	<u>We_81</u>	M. Tanaka	Development of a large RF bucket ion source for large area ion beam milling processes to fabricate micro-structures
<u>We 60</u>	Y. Saito	Target	<u>We 82</u>	V. Gadelshin	MELISSA: the MEDICIS Laser Ion Source Setup At CERN
<u>We 61</u>	D. Satoh	A photoconductive semiconductor switch driven ion beam injector for radiobiological experiments.	<u>We 83</u>	J. Pitters	Source Commissioning for Carbon Ion Treatment Beams at MedAustron
<u>We 62</u>	D. Kim	Development of 1 MV Electrostatic Accelerator with Compact RF Ion Source at KOMAC	<u>We 84</u>	M. Schmidt	EBIS-Based HCI Micro-Beams

CONFERENCE OUTING

We propose Chamonix for the conference outing goal with three options:

- Visit the roots of Swiss cheese making; the medieval city of Gruyeres and its world-renowned cheese. You will visit the medieval castle (est. 1270) & enjoy a traditional cheese fondue. Later, a bus will transfer you to l'Etivaz, where you will taste the famous cheese -"rebibes"- of the Alps. You can expect a stunning view of vineyards and alpine roads. Departure for l'Etivaz: 15:10. Departure for Banquet: 16:45.
- Cable car trip to the Aiguille du Midi at 3842m, with spectacular views from the rooftop of the Alps. A local guide will provide detailed information. Very strong winds may temporarily interrupt cable car operation, while the rapid climb to high altitude means there is no time to acclimatize to the altitude, which may induce headaches or mild altitude sickness. We recommend this option for participants in good physical health and not susceptible to a fear of heights or claustrophobia. Departure for Banquet: 16:00, from cable car parking.
- Walking tour through the village of Chamonix is synonym of very relaxing sightseeing within a vast variety of souvenirs in countless shops, or in its unique alpine museum. Departure for Banquet: 16:00, from cable car parking.

***Good shoes, watertight and warm clothing, gloves, hat, sun-cream & glasses are absolutely necessary.

BANQUET

The banquet will be held in the medieval castle of Chillon, at 18:00. The arranged buses for the outing will transfer participants to the castle. Once through the invitation control in the entrance, the participants can expect:

- 1. A cloak room to be available, to switch from excursion clothing to Banquet dress code.
- 2. A self-guided tour to the castle rooms and exhibitions. (18:00-19:00)
- 3. Followed by a welcoming aperitif, under traditional Swiss folk music. (19:00-19:50)
- 4. Then a conference picture. (19:50-20:00)
- 5. And finally dinner will be served in the Chatelain's and Aula Magna rooms. (20:00-22:00)

The menu aims to please all participants, including those with special dietary requirements -which were communicated during the registration process.

CERN VISIT

Itineraries:

The CERN visit is planned to start right after the conference closure, on Friday afternoon, October 20th, and will last approximately three hours. Conference buses will take the participants to points of general interest in the accelerator complex. Due to access restrictions, participants will be divided into groups and will follow different visit itineraries. Please note that while we will try to satisfy demands, the group/itinerary assignment will depend on availability, based on a *first-come/first-serve* basis.

Participants will be able to sign up for a visit group/itinerary:

- On Sunday afternoon registration welcome reception.
- On Monday morning, during registration.

A few buses will be made available at the end of the tours (leaving at 17h10) to take participants to the airport.

The different itineraries participant can sign up for, are the following:

Route 1	Route 2	Route 3
Linac3 / LEIR	Microcosm	Atlas Visitor Center
Linac4	SM 18	Microcosm
AD	CCC	LHCb
ISOLDE	AMS	CAST

If necessary, a map of CERN can be found at: maps.cern.ch (webpage) smb-dep.web.cern.ch/en/content/gis_mobile (app) The SM18 facility is a world leading magnet test facility for testing magnets and instrumentation at low temperature (1.9 K up to 80 K) and up to high currents (20 kA). Due to its wide infrastructure and long expertise it is has unique capabilities to carry out tests for instrumentation and superconducting magnets in vertical or horizontal test benches, and magnetic measurements of all types on accelerator magnets.

LHCb:

The Large Hadron Collider Beauty experiment, LHCb has been set up to study the slight asymmetries between matter and antimatter using particles known as beauty quarks. Located in a vast cavern 100 m below the ground, every layer of LHCb is designed to identify and measure a different aspect of the particles flying out from the collision. Rather than spraying out in all directions, the beauty quarks formed by the colliding proton beams stay close to the line of the beam pipe. This is reflected in the design of the detector - LHCb stretches for 20 m, with its sub-detectors stacked behind each other like books on a shelf.

ATLAS:

The ATLAS Experiment at CERN is one of the largest most complex scientific instruments ever constructed. It is designed to explore the inner universe, advancing our understanding of the basic building blocks and fundamental forces of nature. Five thousand physicists from about 180 institutions in 38 countries around the world participate in ATLAS. When the LHC is in operation, up to 600 million protons collide every second inside the detector. ATLAS Virtual Visits gives the public a unique opportunity to be part of this great scientific adventure. Using web-based video conferencing tools, participants talk with an ATLAS physicist, receive a tour of the control room, and get answers to their questions.

CCC:

The CERN Control Centre, where particle beams from the whole accelerator complex are controlled 24/7.

AD:

The Antiproton Decelerator is a unique machine providing low-energy antiprotons for studies of antimatter, in particular for creating anti-atoms. Previously, 'antiparticle factories' at CERN or elsewhere consisted of a chain of accelerators, each performing one of the steps needed to provide antiparticles for experiments. Now the AD performs all the tasks alone, from producing the antiprotons to delivering them to the experiments.

Linac3/LEIR:

CERN's heavy ions injector complex.

Linac4:

CERN's 160 MeV H– linear accelerator which will replaceLinac2 as main injector of the CERN proton accelerator complex. Currently being commissioned and undergoing a reliability run, it will be connected to the PSB ring by 2020.

ISOLDE:

The on-line isotope mass separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for many different experiments in the fields of nuclear and atomic physics, solid-state physics, materials science and life sciences.

CAST:

CERN Axion Solar Telescope is looking for a particle called axion, which should be coming from the Sun. Axions are hypothetical particles, neutral, practically stable, with very low mass and very weak interaction (similar to neutrino). They were introduced to solve the strong CP problem and they are candidates for the Dark Matter in the Universe. A de-commissioned LHC test magnet on a moving platform for solar tracking.

AMS:

AMS is a large acceptance and high precision magnetic spectrometer on the ISS (international space station). It is the only experiment in space using a superconducting magnet, allowing an unprecedented sensitive search for antimatter, dark matter and cosmic rays studies.

MICROCOSM:

Microcosm's exhibitions take visitors on a journey through CERN's key installations. Follow the path of the particles from a bottle of Hydrogen, through the network of accelerators, on to collision inside vast experiments.

CERN Visit Rules:

A detailed list of rules is available on the ICIS 2017 website (*icis2017.web.cern.ch/content/visit-rules*), but what it boils down to, are the following basic instructions:

- 1. **Closed, flat or block-heeled shoes** are required for all site visits; helmets will be provided when necessary.
- 2. Cryogenic, Gas, Cooling, High Voltage, High Magnetic fields, Radioactivity, Fall, Trip, Slip, Damage of delicate equipment... A few hazards that can be avoided by:
 - Following the instructions of your guide at all times.
 - Staying in the areas marked for visitor access.
 - **NOT touching** the equipment.
- 3. In case of **alarm**, follow the **instructions** given by your **guide**, to the nearest **emergency exit**.

Please note that by taking part in the CERN visit, you agree to stick to the fore-mentioned rules. Entry may be refused by a guide, in case of compromise of safety. **Visitors enter at their own risk** and are responsible for the safety of their equipment. We hope that you will enjoy your visit and shall be happy answer any questions you may have.

SPONSORS & EXHIBITORS

We would like to thank our sponsors & exhibitors, for helping ICIS 2017 take place:

IN CASE OF EMERGENCIES

- Police: 117 (CH) 17 (FR)
- Fire Brigade: 118 (CH) 18 (FR)
- Ambulance: 144 (CH) 15 (FR)
- Anti-poison: 117 (CH) 04 72 11 69 11 (FR)
- CERN emergency: (00 41 22 76) 74 444
- European Emergency call center: 112
- Richard Scrivens: +41 75 411 4203
- Jacques Lettry: +41 75 411 0990
- Bruce Marsh: +41 22 76 68813